Channel integrated optoelectronic tweezer chip for microfluidic particle manipulation
نویسندگان
چکیده
منابع مشابه
Independent Study: Microfluidic Channel for Acoustic Particle Manipulation
To study acoustic microfluidic particle manipulation, a microfluidic channel was designed in AutoCAD and fabricated in a silicon wafer using potassium hydroxide etching and other cleanroom techniques. The first channel created was destructively tested and its fabrication techniques characterized; future channel development is outlined.
متن کاملHigh-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip.
Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) ...
متن کاملDynamic DMD-Driven Optoelectronic Tweezers for Microscopic Particle Manipulation
We demonstrate dynamic manipulation of microscopic particles using a DMDproduced projection image in an optoelectronics tweezers system. Single-particle trapping and movement (up to 40 μm/sec) via optically-induced dielectrophoresis were observed. 2003 Optical Society of America OCIS codes: (170.4520) Optical confinement and manipulation, (230.0250) Optoelectronics
متن کاملMicrofluidic Devices for Cellular Manipulation and Analysis on a Chip
This paper reports the micromachining technology developed for the fabrication of microfluidic devices for the biological research and also our recent development of on-chip manipulation and analysis of cells. Development of micromachining technologies such as deep glass etching using high-density plasmas has enabled us to fabricate highly functional microfluidic devices with precise microstruc...
متن کاملIntegrated cell manipulation system--CMOS/microfluidic hybrid.
Manipulation of biological cells using a CMOS/microfluidic hybrid system is demonstrated. The hybrid system starts with a custom-designed CMOS (complementary metal-oxide semiconductor) chip fabricated in a semiconductor foundry. A microfluidic channel is post-fabricated on top of the CMOS chip to provide biocompatible environments. The motion of individual biological cells that are tagged with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Micromechanics and Microengineering
سال: 2020
ISSN: 0960-1317,1361-6439
DOI: 10.1088/1361-6439/ab6c72